Training a single generic model for solving arbitrary datasets is always a dream for ML researchers, especially in the era of foundation models. While such dreams have been realized in perception domains like images or natural languages, whether they can be reproduced in reasoning domains (like graphs) remains an open challenge.
-
-
Articles récents
- Intel® Xeon® 6 Processors: The Smart Total Cost of Ownership Choice
- Next-Gen AI Inference: Intel® Xeon® Processors Power Vision, NLP, and Recommender Workloads
- Document Summarization: Transforming Enterprise Content with Intel® AI for Enterprise RAG
- AutoRound Meets SGLang: Enabling Quantized Model Inference with AutoRound
- In-production AI Optimization Guide for Xeon: Search and Recommendation Use Case
-
Neural networks news
Intel NN News
- Intel® AI for Enterprise Inference as a Deployable Architecture on IBM Cloud
Intel® AI for Enterprise Inference as a Deployable Architecture on IBM CloudAuthored by: Pai […]
- Intel® Xeon® 6 Processors: The Smart Total Cost of Ownership Choice
The latest Intel® Xeon® 6 processors deliver performance advantages across key enterprise […]
- Next-Gen AI Inference: Intel® Xeon® Processors Power Vision, NLP, and Recommender Workloads
Intel® Xeon® processors can deliver a CPU-first platform built for modern AI workloads without […]
- Intel® AI for Enterprise Inference as a Deployable Architecture on IBM Cloud
-