In the race to operationalize AI, success depends not on flashy pilots, but on turning experimentation into measurable business value. According to David Ellison, Chief Data Scientist and Director of AI Engineering at Lenovo, the most successful AI projects start with clear business outcomes—not models. From cost savings to new revenue streams, the focus is on impact, supported by infrastructure that can scale and systems that users trust.
-
-
Articles récents
- Next-Gen AI Inference: Intel® Xeon® Processors Power Vision, NLP, and Recommender Workloads
- Document Summarization: Transforming Enterprise Content with Intel® AI for Enterprise RAG
- AutoRound Meets SGLang: Enabling Quantized Model Inference with AutoRound
- In-production AI Optimization Guide for Xeon: Search and Recommendation Use Case
- Argonne’s Aurora Supercomputer Helps Power Breakthrough Simulations of Quantum Materials
-
Neural networks news
Intel NN News
- Next-Gen AI Inference: Intel® Xeon® Processors Power Vision, NLP, and Recommender Workloads
Intel® Xeon® processors can deliver a CPU-first platform built for modern AI workloads without […]
- Document Summarization: Transforming Enterprise Content with Intel® AI for Enterprise RAG
Transform enterprise documents into insights with Document Summarization, optimized for Intel® […]
- AutoRound Meets SGLang: Enabling Quantized Model Inference with AutoRound
We are thrilled to announce an official collaboration between SGLang and AutoRound, enabling […]
- Next-Gen AI Inference: Intel® Xeon® Processors Power Vision, NLP, and Recommender Workloads
-