Large Language Models are revolutionizing AI applications; however, slow inference speeds continue to be a significant challenge. Intel researchers, along with industry and university partners, are actively working to address this issue and accelerate the efficiency of LLMs. In a series of blog posts, Intel Researchers introduce several novel works, including a method that accelerates text generation by up to 2.7 times, a method that extends assisted generation to work with a small language model from any model family, and a technique that enables any small “draft” model to accelerate any LLM, regardless of vocabulary differences
-
-
Articles récents
- Next-Gen AI Inference: Intel® Xeon® Processors Power Vision, NLP, and Recommender Workloads
- Document Summarization: Transforming Enterprise Content with Intel® AI for Enterprise RAG
- AutoRound Meets SGLang: Enabling Quantized Model Inference with AutoRound
- In-production AI Optimization Guide for Xeon: Search and Recommendation Use Case
- Argonne’s Aurora Supercomputer Helps Power Breakthrough Simulations of Quantum Materials
-
Neural networks news
Intel NN News
- Next-Gen AI Inference: Intel® Xeon® Processors Power Vision, NLP, and Recommender Workloads
Intel® Xeon® processors can deliver a CPU-first platform built for modern AI workloads without […]
- Document Summarization: Transforming Enterprise Content with Intel® AI for Enterprise RAG
Transform enterprise documents into insights with Document Summarization, optimized for Intel® […]
- AutoRound Meets SGLang: Enabling Quantized Model Inference with AutoRound
We are thrilled to announce an official collaboration between SGLang and AutoRound, enabling […]
- Next-Gen AI Inference: Intel® Xeon® Processors Power Vision, NLP, and Recommender Workloads
-