In the race to operationalize AI, success depends not on flashy pilots, but on turning experimentation into measurable business value. According to David Ellison, Chief Data Scientist and Director of AI Engineering at Lenovo, the most successful AI projects start with clear business outcomes—not models. From cost savings to new revenue streams, the focus is on impact, supported by infrastructure that can scale and systems that users trust.
-
-
Articles récents
- Optimizing SLMs on Intel® Xeon® Processors: A llama.cpp Performance Study
- Intel® Xeon® 6 Processors: The Smart Total Cost of Ownership Choice
- Next-Gen AI Inference: Intel® Xeon® Processors Power Vision, NLP, and Recommender Workloads
- Document Summarization: Transforming Enterprise Content with Intel® AI for Enterprise RAG
- AutoRound Meets SGLang: Enabling Quantized Model Inference with AutoRound
-
Neural networks news
Intel NN News
- Optimizing SLMs on Intel® Xeon® Processors: A llama.cpp Performance Study
In this post, we'll dicuss how to run responsive, CPU-only applications using a quantized SLM in […]
- Intel® AI for Enterprise Inference as a Deployable Architecture on IBM Cloud
Intel® AI for Enterprise Inference as a Deployable Architecture on IBM CloudAuthored by: Pai […]
- Intel® Xeon® 6 Processors: The Smart Total Cost of Ownership Choice
The latest Intel® Xeon® 6 processors deliver performance advantages across key enterprise […]
- Optimizing SLMs on Intel® Xeon® Processors: A llama.cpp Performance Study
-