Understanding the internal mechanisms of large vision-language models (LVLMs) is a complex task. LVLM-Interpret helps users understand the model’s internal decision-making processes, identifying potential responsible artificial intelligence (AI) issues such as biases or incorrect associations. The tool adapts multiple interpretability methods to LVLMs for interactive analysis, including raw attention, relevancy maps, and causal interpretation.
-
-
Articles récents
- In-production AI Optimization Guide for Xeon: Search and Recommendation Use Case
- Argonne’s Aurora Supercomputer Helps Power Breakthrough Simulations of Quantum Materials
- Argonne’s Aurora Supercomputer Drives Simulations to Explore How Light Shapes Quantum Materials
- AERIS Earth Systems Model Pushes AI for Science to New Heights
- Leveraging Edge AI for Business Innovation
-
Neural networks news
Intel NN News
- In-production AI Optimization Guide for Xeon: Search and Recommendation Use Case
In this guide, you'll learn multiple aspects of optimizing the Search and Recommendation model […]
- AERIS Earth Systems Model Pushes AI for Science to New Heights
Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory introduce AERIS, […]
- Argonne’s Aurora Supercomputer Drives Simulations to Explore How Light Shapes Quantum Materials
Researchers using the Aurora supercomputer at the U.S. Department of Energy’s Argonne National […]
- In-production AI Optimization Guide for Xeon: Search and Recommendation Use Case
-