Intel presents five computer vision papers that detail novel works that include a Dynamic Scene Graph Detection Transformer, a Fast Learnable Once-for-all Adversarial Training method, a method for quantizing convolutional neural networks for efficient training, face access models applied in a hypothetical social network, and a novel non-local self-attentive pooling method.
-
-
Articles récents
- Intel® Xeon® Processors: The Most Preferred CPU for AI Host Nodes
- Building AI With Empathy: Sorenson’s Mission for Accessibility
- Multi-node deployments using Intel® AI for Enterprise RAG
- Connected Data is the Future: How Neo4j Is Enabling the Next Generation of AI
- Orchestrating AI for Real Business Value: Google Cloud’s Approach to Scalable Intelligence
-
Neural networks news
Intel NN News
- Intel® Xeon® Processors: The Most Preferred CPU for AI Host Nodes
Today’s AI workloads are not purely offloaded to GPU accelerators. Host CPUs such as the Intel® […]
- Multi-node deployments using Intel® AI for Enterprise RAG
As enterprises scale generative AI across diverse infrastructures, Intel® AI for Enterprise RAG […]
- Building AI With Empathy: Sorenson’s Mission for Accessibility
For Sorenson Senior Director of AI Mariam Rahmani, the future of AI isn’t about building the […]
- Intel® Xeon® Processors: The Most Preferred CPU for AI Host Nodes
-