-
-
Articles récents
- Intel® Xeon® Processors: The Most Preferred CPU for AI Host Nodes
- Building AI With Empathy: Sorenson’s Mission for Accessibility
- Multi-node deployments using Intel® AI for Enterprise RAG
- Connected Data is the Future: How Neo4j Is Enabling the Next Generation of AI
- Orchestrating AI for Real Business Value: Google Cloud’s Approach to Scalable Intelligence
-
Neural networks news
Intel NN News
- Intel® Xeon® Processors: The Most Preferred CPU for AI Host Nodes
Today’s AI workloads are not purely offloaded to GPU accelerators. Host CPUs such as the Intel® […]
- Multi-node deployments using Intel® AI for Enterprise RAG
As enterprises scale generative AI across diverse infrastructures, Intel® AI for Enterprise RAG […]
- Building AI With Empathy: Sorenson’s Mission for Accessibility
For Sorenson Senior Director of AI Mariam Rahmani, the future of AI isn’t about building the […]
- Intel® Xeon® Processors: The Most Preferred CPU for AI Host Nodes
-
Archives mensuelles : juillet 2022
OpenVINO™ Execution Provider + Model Caching = Better First Inference Latency for your ONNX Models
Developers can now leverage model caching through the OpenVINO™ Execution Provider for ONNX Runtime
Publié dans Non classé
Laisser un commentaire
NEMO: A Novel Multi-Objective Optimization Method for AI Challenges
Neuroevolution-Enhanced Multi-Objective Optimization (NEMO) for Mixed-Precision Quantization delivers state-of-the-art compute speedups and memory improvements for artificial intelligence (AI) applications.
Publié dans Non classé
Laisser un commentaire
AttentionLite: Towards Efficient Self-Attention Models for Vision
Intel Labs has created a novel framework for producing a class of parameter- and compute-efficient models called AttentionLite, which leverages recent advances in self-attention as a substitute for convolutions.
Publié dans Non classé
Laisser un commentaire
On the Geometry of Generalization and Memorization in Deep Neural Networks
Our latest work, presented recently at the 2021 International Conference on Learning Representations (ICLR), forces a deep network to memorize some of the training examples by randomly changing their labels.
Publié dans Non classé
Laisser un commentaire
Seat of Knowledge: AI Systems with Deeply Structured Knowledge
This blog will outline the third class in this classification and its promising role in supporting machine understanding, context-based decision making, and other aspects of higher machine intelligence.
Publié dans Non classé
Laisser un commentaire
Best Practices for Text-Classification with Distillation Part (3/4) – Word Order Sensitivity (WOS)
In this post, I introduce a metric for estimating the complexity level of your dataset and task, and I describe how to utilize it to optimize distillation performance.
Publié dans Non classé
Laisser un commentaire
Best Practices for Text Classification with Distillation (Part 1/4) – How to achieve BERT results by
Model distillation is a powerful pruning technique, and in many use cases, it yields significant speedup and memory size reduction.
Publié dans Non classé
Laisser un commentaire
Learning to Optimize Memory Allocation on Hardware using Reinforcement Learning
We describe a scalable framework that combines Deep RL with genetic algorithms to search in extremely large combinatorial spaces to solve a critical memory allocation problem in hardware.
Publié dans Non classé
Laisser un commentaire
Best Practices for Text Classification with Distillation (Part 2/4) – Challenging Use Cases
In this blog, I intend to explore this method further and investigate other test classification datasets and sub-tasks in an effort to duplicate these results.
Publié dans Non classé
Laisser un commentaire
Bring your own dataset and retrain a TensorFlow model with OpenVINO™ toolkit
Machine learning requires us to have existing data — not the data our application will use when we run it, but data to learn from.
Publié dans Non classé
Laisser un commentaire