

Vitis Al

Olivier Méhaignerie Xilinx Field Application Engineer Avnet-Silica

Deep Learning

5-Layer Neural Network

> Why now?

- New processors making DNN training feasible (Ops/\$)
- Huge amounts of training data

> Faster/Better Results

- Caused explosion in AI Research
- More Applications
- More Startups
- More Innovation
- More Acquisitions . . .

Deep Learning: Training vs. Inference

Training: Process for machine to "learn" and optimize a model from data

Inference: Using trained model to predict/estimate outcomes from new observations

Xilinx Features for Implementing Efficient Inference Engines

Flexible Architecture for Any Precision

Flexible On-chip Memory for low latency

AI Solutions for Xilinx

- Xilinx's Vitis AI (this presentation)
 - Evolution of DNNDK (acquisition of Deephi company)
 - Zynq, Alveo, Versal (soon)
- FINN https://xilinx.github.io/finn/
 - Launched by Xilinx Research Labs
 - Official support is community-based
 - Produces an AXI-attached microarchitecture

HLS4ML - <u>https://github.com/hls-fpga-machine-learning/hls4ml</u>

- Open-source project
- Generates a RTL microarchitecture
- Leverages Vivado HLS for RTL generation

Mipsology's Zebra – <u>www.mipsology.com</u>

- Xilinx partner
- 5 The easiest and most efficient solution Copyright 2019 Xilinx

S XII INX

Vitis AI: Unified AI Inference Solution Stack

Vitis AI: Unified AI Inference Solution Stack

- > Support both edge and cloud
- Support AI model zoo
- Several releases before this Vitis AI release

Vitis Al Model Zoo 1.0

- Shared Repository of Pre-Trained AI Models
 - Ready to Deploy, Pre-Optimized Models
 - 50+ Models Support Broad Range of Applications
 - Open and Available on GitHub
- Leverage Standard Frameworks, Networks, Datasets
 - Trained Using TensorFlow and Caffe
- Deploy As-is, Re-Train or Further Optimize
 - Caffe_Xilinx, a custom distribution of Caffe provided to test & finetune caffe models
 - Training code, test code and train eval instructions provided

Application	Model					
	Face detection					
	Landmark Localization					
Face	Face recognition					
	Face attributes recognition					
Pedestrian	Pedestrian Detection					
	Pose Estimation					
	Person Re-identification					
Video Analytics	Object detection					
	Pedestrian Attributes Recognition					
	Car Attributes Recognition					
	Car Logo Detection					
	Car Logo Recognition					
	License Plate Detection					
	License Plate Recognition					
ADAS/AD	Object Detection					
	3D Car Detection					
	Lane Detection					
	Traffic Sign Detection					
	Semantic Segmentation					
	Drivable Space Detection					

Model Zoo

Name	Framework	Backbone	Input Size	OPS per image	Traini
cf_resnet50_imagenet_224_224_7.7G	caffe	resnet50	224*224	7.7G	ImageNet [*]
cf_resnet18_imagenet_224_224_3.65G	caffe	resnet18	224*224	3.65G	ImageNet [*]
cf_inceptionv1_imagenet_224_224_3.16G	caffe	inception_v1	224*224	3.16G	ImageNet [*]
cf_inceptionv2_imagenet_224_224_4G	caffe	bn-inception	224*224	4G	ImageNet [*]
cf_inceptionv3_imagenet_299_299_11.4G	caffe	inception_v3	299*299	11.4G	ImageNet [*]
cf_inceptionv4_imagenet_299_299_24.5G	caffe	inception_v3	299*299	24.5G	ImageNet [*]
cf_mobilenetv2_imagenet_224_224_0.59G	caffe	MobileNet_v2	224*224	608M	ImageNet [*]

Contains code and instructions.

Test code and instruction for floating model for evaluation. # Test code and instruction for quantized model for evaluation.

Contains the environment requirement, the input and output nodes as well as the data preprocess and postprocess information.

Quantized model for the compiler (extended Tensorflow format).

Quantized model for evaluation.

Float-point frozen model, the input to the `vai_q_tensorflow`.

Vitis Al Or Vitis What's the Relation ?

Vitis Target Platform

AI

Direct Framework Compilation In Minutes

Vitis AI Development Kit

Al Optimizer – pruning tool

> World's leading model compression

- >> Iterative, coarse-grained pruning
- >> Reduce model size 5 30x
- Increase performance 2 10x
- >> Minimal accuracy loss, <1%

> Supported framework

>> Caffe, Darknet, TensorFlow

> Commercial license available

>> Contact Xilinx sales representative

Iterative Pruning

Iterative pruning

- Iterative pruning generally works better than pruning directly
- When facing accuracy drops, try a small step
- For a full pruning work, set steps from large to small
- Experience on model training is very helpful
- A typical pruning process

Vitis Al Quantizer

> Uniform symmetric quantization

>> 8bit for both weights and activation

> Support both calibration and finetune

- >> Calibration A small set of training data
- >> Finetune Original training data, further increase accuracy
- > Support framework
 - >> Caffe, Tensorflow
 - >> Pytorch
- > Have both GPU and CPU version
 - >> GPU version is 10x faster than CPU version

Al Compiler

- > Maps the quantized model to instruction set and data flow
 - >> High-efficient tensor-level DPU instruction set

> Performs sophisticated optimizations

- >> Layer fusion and decomposition
- >> Instruction scheduling
- >> Reuses on-chip memory as much as possible
- > Support framework
 - >> Caffe, Tensorflow
 - >> Pytorch (Q1, 2020)

Deploy Using Vitis AI runtime APIs

CNN DPU for Zynq SoC / MPSoC

> Flexible and Configurable DPU

- Configurable hardware architecture includes : Z7020 to Z7100, ZU2 to ZU11
- >> Relu, Relu6, LeakyRelu
- » Max/Average pooling 2x2~8x8
- Ram usage for higher performance or lower resource utilization
- >> Core number, Bram or Uram, More DSP or less DSP
- Support channel augmentation to improve performance
- Support low power consumption feature

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf

DPU Typical Options & Interfaces

- 3-level parallelism is exploited
 - Pixel * input channel * output channel

- Small core B1152
 - Parallelism: 4*12*12
 - target Z7020/ZU2/ZU3
- Big core B4096
 - Parallelism: 8*16*16
 - Target ZU5 and above

DPU Utilization

More DSP

More LUT

Arch	LUTs	Registers	BRAM*	DSP	Arch	LUTs	Registers	BRAM*	DSP
B512	17951	28280	69.5	97	B512	20759	33572	69.5	66
B800	20617	35065	87	141	B1024	29155	49823	101.5	130
B1024	22327	39000	101.5	193	B1152	30043	49588	117.5	146
B1152	22796	40276	117.5	193	B1600	33130	60739	123	202
B1600	26270	50005	123	281	D1000	07055	70050		202
B2304	29592	57549	161.5	385	B2304	37055	72850	161.5	290
B3136	33266	69110	203.5	505	B3136	41714	86132	203.5	394
B4096	37495	84157	249.5	641	B4096	44583	99791	249.5	514

DPU provides flexible option depending on costumer's resources and continues to improve

* URAM also can be used by DPU if device supports, every URAM is roughly used as 3.7 BRAM

DPU Scalability

Peak INT8 OPS*

* With heterogenous DPUs

Vitis Al Library: the What?

- Vitis AI Library provides high-level API based libraries across different vision tasks: classification, detection, segmentation and etc.
 - Reference applications to help customers' fast prototyping
 - Optimized codes used in AI applications and products

AI Application General Processing Flow

• A typical abstraction of processing flow:

> Algorithm-level processing

- » Data normalization before sending to DPU
- » Post processing (e.g. bounding boxes decoding in detection)

> Additional system-level workloads for AI inference

- » Color conversion / resizing
- » Path planning / control / status update

What Vitis Al Library Provides

Al Library offers libraries for

- Algorithm-level optimization
- Open and easy to extend
- Directly support models in AI Model Zoo

Al Profiler

- The Vitis AI profiler tools is a set of tools that helps profile and visualize AI applications based on the Vitis AI Library:
 - Easy to use; requires neither the change in user's code nor re-compilation of the program
 - Figuring out hot spots or bottlenecks of preference at a glance
 - Illustrating the running state of difference computing units

Al Profiler

Xilinx Vitis Al Profile: Timeline

DPU Target Reference Design

- > DPU IP
- > Model and related libraries

> Prebuild image

> Config files

Vitis Al

https://github.com/Xilinx/Vitis-Al

https://github.com/Xilinx/Vitis-In-Depth-Tutorial/tree/master/Machine_Learning

XILINX.

Thank You

Putting Metrics & Benchmarks in Focus

Focus on Application Level Performance Where Xilinx Solutions Shine

A Broader View of ML Benchmarking (Int8)

Throughput vs. GPU Batch

GoogleNetv1 (Int8)

Alveo Delivers Low, Fixed Latency (< 2ms) in <u>ALL</u> Scenarios

Next Step: Xilinx Pruning Techniques

Throughput vs. GPU Batch

GoogleNetv1 (Int8)

Deephi Proprietary Pruning Increases Performance 30% or More

Xilinx vs. GPU: Edge ML Performance

